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Molecular multiphoton transitions. 

Computational spectroscopy for perturbative 
and non-perturbative regimens 

by ANDRE D. BANDRAUKT 
Theoretical Department, Institute of Molecular Science, Myodaiji, 

Okazaki, 444, Japan 

The total Schrodinger equation for an electromagnetic field interacting with a 
molecule is shown to lead to time independent or time dependent coupled 
differential equations. The time independent equations result from using a 
quantized representation, i.e., photon number states, of the electromagnetic field. 
The stationary states of such a quantized field-molecule system are called dressed 
states. Appropriate numerical methods are presented in order to treat radiative and 
non-radiative interactions simultaneously for any coupling strength, i.e. from the 
perturbative, Fermi-Golden rule limit, to the non-perturbative regime for both 
types of interactions. Both bound-bound, bound-continuum and continuum- 
continuum radiative and non-radiative transitions can be treated exactly in the 
present scheme. The relationship between the quantized time independent ap- 
proach and the time dependent semiclassical field method is achieved through 
consideration of the coherent states of the quantized radiation field. In this limit, 
multiphoton transitions are more conveniently treated by coupled partial differen- 
tial equations both in time and space. The time dependent approach is therefore 
more appropriate for very short laser pulses, especially for pulse time durations less 
than the molecular natural time-scales, in which case stationary states are ill- 
defined. Examples of both time-independent and time dependent calculations are 
presented. In the first case, coherent laser control of multiphoton transitions is 
illustrated by a time independent, all state, coupled equations method. Finally, high 
intensity direct photodissociation by subpicosecond pulses is presented as an 
example of laser pulse effects from a time dependent calculation in the non- 
perturbative regime, where Laser-induced avoided crossings can be created by the 
pulse itself. The coupled equations methods are in principle exact and can be readily 
implemented for diatomics and triatomics with current computer technology. 

1. Introduction 
Recent advances in laser technology are providing chemists with the possibility of 

increasing resolution in spectroscopic measurements, thus giving more accurate 
information on energy levels and spectroscopic constants of molecules; see for instance 
(Herzberg 1966, Huber and Herzberg 1979, Lefebvre-Brion and Field 1986). The 
traditional approach in spectroscopy has been to use resonant single photon excitation 
or even two photon spectroscopies such as the Raman effect, to map out the energy 
levels of a particular molecule. Such methods have been perturbative, in so far as the 
effect of the radiation field on the molecule is negligible, and a Franck-Condon factor 
approach in interpreting radiative transition probabilities is found to be usually quite 
adequate. More recently attempts are being made to correlate spectroscopic inform- 
ation with potential energy surfaces (Murrell et al. 1984, Yamashita and Morokuma 
1991). 

t Permanent address: Laboratoire de Chimie ThCorique, FacultC des Sciences, Universite de 
Sherbrooke, Sherbrooke, QuC., J1 K 2R1, Canada. 
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124 A.  D. Bandrauk 

Molecular dynamics is being explored currently by new time-resolved multiphoton 
experimental techniques (Crim et al. 1990, Zewaill991). In fact the interaction between 
the disciplines of molecular dynamics and multiphoton molecular spectroscopy is fast 
evolving into a new area of modern research, laser control of chemical dynamics and 
reactions (Bandrauk and Wallace 1992, Moffatt 1992, Bandrauk 1993). The complexity 
of multiphoton processes involved in such new studies requires theoretical interpret- 
ation in parallel with the experimental progress. Empirical (Murrell et al. 1984) and 
ab initio surfaces (Yamashita and Morokuma 1991), are an essential starting point. 
However, the description of radiative transitions requires theoretical methods and 
techniques much akin to those used in molecular dynamics (Takada et al. 1992). 

The radiative transitions induced by lasers can be described in a systematic 
theoretical approach by the use of the field-molecule or dressed state representation 
(George et al. 1977,1982, Bandrauk et al. 1978,1987,1988). The approach results in a 
very practical numerical method, a coupled equations method to calculate multiphoton 
transition probabilities in molecules as a function of the potential surfaces, the relevant 
radiative transition moments, and the non-radiative dynamics such as non-adiabatic 
effects (Bandrauk and Child J 970), and others (Herzberg 1966, Lefebvre-Brion and 
Field 1986). Such theoretical or numerical methods, can span perturbative (weak field) 
to non-perturbative, nonlinear (strong field) radiative interaction regimes and can 
therefore provide an appropriate theoretical framework for elucidating the role of 
resonant and non-resonant transitions, interfering radiative or photon pathways, etc. 
to various multiphoton transition amplitudes or probabilities. Dynamics can be 
inferred from the dependence of these transition amplitudes on the potential surfaces 
and the non-radiative (radiationless), such as non-adiabatic, spin-orbit, etc., processes 
operating between these surfaces. Such calculations based on the dressed state method 
are time independent and have been fully developed to treat bound-bound, bound- 
continuum, continuum-continuum, transitions in a unified way by using techniques of 
collision or S-matrix theory (Bandrauk et al. 198.5, 1987, 1988, Miret-Artes et al. 1992). 

Current laser technology has made considerable progress in the production of short 
light pulses on time scales ranging from picoseconds s), typical of nuclear 
vibrational motions, to femtosecond s), a time scale usually associated with 
electronic motion. Simultaneous with these short pulse developments has been the 
concentration of ever increasing intensities on these short time-scales. Thus intensities 
from terawatts (10” W cm-’) to petawatts W cm-2) are currently being pro- 
duced (Corkum 198.5, Watanabe et al. 1991). These developments presage the new 
emerging discipline of nonlinear photochemistry where non-perturbative multiphoton 
transitions are expected to occur (Bandrauk and Wallace 1992, Bandrauk 1993). 
Concurrent with the development of such intense pulses is the shaping of these short 
pulses to control short time excitations of nuclear and electronic motion (Scherer et al. 
1991, Zewail 1991). These new experimental developments require therefore perturba- 
tive and non-perturbative time-dependent theoretical descriptions, reflecting the 
importance of the pulse’s properties as well as the coherence induced by such sources. 

In this review we shall report on the theoretical and numerical methods that have 
been developed to treat spectroscopic phenomena in a unified way. In particular the 
present author’s contributions with his collaborators will be emphasized. In parallel 
with the computational progress of quantum chemists (Yamashita and Morokuma 
1991) and dynamical theorists (Clary 1986, Takada et al. 1992), we will report on 
methods and approaches used in what one might appropriately call the area of 
computational spectroscopy. These theoretical and numerical methods encompass the 
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Molecular multiphoton transitions 125 

perturbative limits of both radiative and non-radiative (dynamical) interactions in a 
systematic way for both time-independent (or long pulses) and time-dependent (short 
pulses) radiative interactions. In the final analysis, it is clear that by increasing laser 
intensities, one can achieve radiative transition rates superior to non-radiative 
relaxation rates. Thus non-perturbative treatments of radiative and non-radiative 
processes simultaneously is a primary objective of the present theoretical and 
computational approach. 

2. Field-molecule Hamiltonian and coupled equations 
We have emphasized in the introduction that it is possible to treat electromagnetic 

field-molecule interactions as time independent systems for long pulses whereas for 
short pulses a time dependent approach is more practical. The connection between the 
two limits can be made by starting from a full quantum approach to the field-molecule 
problem (Bandrauk 1993). In the time-independent approach, one calculates the 
stationary eigenstates of the field-molecule system. These are called dressed states 
(George et al. 1977, 1982, Bandrauk et al. 1978, 1987, 1988, 1989, Cohen-Tannoudji 
et al. 1983). In the limit of large photon numbers, which are eigenvalues of the quantum 
states of the radiation field, one can recover the semiclassical time-dependent 
electromagnetic field through the concept of the coherent state (Glauber 1963, Loudon 
1973, Mittleman 1982, Bandrauk 1993). 

We first introduce the full quantum description. The total Hamiltonian for a 
molecular system interaction with a quantized radiation field is 

A(r, R )  = TN + Ael(r, R )  + A, + fint(r, R),  (1) 

where pN is the nuclear kinetic-energy operator and A, is the Hamiltonian of the free 
quantized radiation field. The electronic Hamiltonian HJr ,  R )  and the interaction 
potential qn,(r, R), which includes both radiative and radiationless interactions, depend 
parametrically on the internuclear distance R and implicitly on the electronic 
coordinates r. In the present case we limit ourselves to a single nuclear coordinate (e.g., 
a diatomic molecule), and a single radiation mode, i.e., a monochromatic mode of 
frequency o. Equation (1) can be easily generalized to many modes, both nuclear, 
R,, CI = 1, N and radiation, mi, i = 1, m. The quantum field hamiltonian A,, in view of the 
harmonic solutions of the free classical Maxwell equations (Loudon 1977, Bandrauk 
1993), is conventionally written as a harmonic oscillator system, 

A, = hw(d +d + 1/2), (2) 
where ci+ and ci are the creation and annihilation operators of the quantum field 
oscillator. These satisfy the following relations,, 

B+dln)=nJn); [B,a+]=I ,  (3) 

ci+In)=(n+ l)*’’ln+ 1); Bln)=n”’ln- 1). (4) 
In) are the quantum radiation field eigenstates of the photon number n. To these 
eigenstates, there correspond photon wavefunctions $,(E) where E, the electric field 
amplitude, appears as a coordinate (Bloch and Nordsieck 1937, Nguyen-Dang and 
Bandrauk 1983, 1984). Thus a state of well defined photon number n has an infinite 
distribution of electric field amplitude values, i.e.- co < E <  co. This is an incoherent 
electric field state. 

The radiative and non-radiative couplings contained in cnt(R) depend on the 
representations used to define the system. Thus for the radiation field one encounters 
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126 A.  D. Bandrauk 

the problem of gauge representations (Loudon 1977, Mittieman 1982), whereas for the 
nuclear dynamics one has a choice of either adiabatic or diabatic electronic 
Hamiltonians (Bandrauk and Child 1970, Lefebvre-Brion and Field 1986). 

We first address briefly the gauge freedom inherent in any radiation-matter 
interaction description. For a single charged particle interacting with a quantized 
radiation field and some static potential V(r), the total time-independent quantum 
Hamiltonian is defined in the minimum or Coulomb gauge as, (Loudon 1977, 
Cohen-Tannoudji et al. 1989), 

where the momentum 

and A is the transverse quantum vector potential of the electromagnetic field. The latter 
can be expressed in terms of the field operators, equations (3,4) as, 

A=-(-) - c o $(d+h') .  
0 2 v  

In equation (6), i is the polarization (unit vector perpendicular to the propagation 
direction); Vis the field volume (e.g. laser cavity); c and o are the velocity of light and 
corresponding frequency. We have assumed here the dipole approximation r / k  1, 
where r is the atomic dimension (- 10-'cm) and 2 is the radiation wavelength 
(Avis- cm) so that the amplitude A is a spatial constant instead of a plane wave: 
exp [i(k - r)] = exp [27n(riA)] _N 1, where k is the wave-vector lkl =ole .  

The Hamiltonian H c  defined in equation ( 5 )  is called the Coulomb or velocity gauge 
Hamiltonian as it can be derived from a rigorous Lagrangian formulation of field- 
molecule interaction, subject to a constraint. This is the classical condition that 
V - A = 0, consistent with the classical Maxwell equation V * B = 0 (no magnetic poles) 
and the potential definition B = V x A. The Coulomb gauge condition V - A = 0, implies 
A is transversal, k-&=O. It can be seen that the Hamiltonian (5) is invariant under the 
following unitary transformation to the wavefunction, 

Y(r) = exp [ - ieP(r)/h] ~ ( r ) ,  (7) 

where P(r)  is a time-independent scalar operator function, provided A is changed in the 
following manner, 

A/=  A + VP. (8) 
Thus a phase change in the Schrodinger wave !P produces a change in the vector 
potential A, since the new Hamiltonian is 

(9) I?= exp ( + ieEih) B exp ( - ieP/h), 

and remains invariant if A'is transformed according to equation (8). Clearly the unitary 
transformation (9) generates a new Hamiltonian. There is obviously an infinite number 
of such transformations and some have been considered for molecular problems by 
Bandrauk et al. (1 986). 

We examine here the electric field gauge transformation which gives a Hamiltonian 
expressible in terms of the physical (dynamical) variables of the total system, i.e., fields, 
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Molecular multiphoton transitions 127 

polarizations, velocities and positions (Power and Thirunamachandran 1983). Let Y" 
be the wave function that satisfies the Coulomb gauge Schrodinger equation 
AcYC = EY". The electric field transformation is obtained from the following 
equations, 

YE =exp (-ier * Ah) !P, 

HE = exp (ier * A/h)Hc exp( - ier - A/h), 

(10) 

(1 1) 

P2 =-+ v r ) + A f - e r . E ,  
2m 

where we have defined the electric operator E as, 

Equation (13) is the quantum Heisenberg equation of motion for the electric field 
operator E, whose classical value E is related to the classical vector potential A by the 
relation E= - l / c 6 A / 6 t ,  is .  E and Alc are canonically conjugate dynamical field 
variables in the classical and quantum theory respectively (Loudon 1977 Cohen- 
Tannoudji et al. 1977, Bandrauk 1993). 

Equation (12) shows that in the new Hamiltonian, the radiative interaction is 
dipolar, er. E, involving the particle dipole moment and the electric field, In the 
Coulomb gauge, this interaction would involve two terms e A  * p/mc and e2A2/2 mc2. In 
the dipole approximate, r / l<< 1, the last term is independent of particle coordinates and 
introduces a constant energy shift, called the ponderomotiue energy (Mittleman 1982, 
Bandrauk, 1993). At high intensities, this laser induced energy shift can dominate the 
photoionization dynamics of atoms and molecules (Bandrauk and Wallace 1992). 

Thus in both gauges, the radiative interactions are different, as is the momentum 
operator, p=(h/i)Vr. By explicit calculation one obtains that it is the velocity operator 
which is invariant to the transformation (7) and (9), 

= exp (ier * A/h) i exp (- ier * A/h), 

= (ih)- * [i ,  HE] = p/m. 

The electric field gauge Hamiltonian fie defined in equation (12) has the advantage of 
being expressed in terms of quantum operators which have physical observables as 
their classical analogs. Of course both Hamiltonians, f i c  and HE are isospectral, i.e., 
they have the same energy spectrum since they are related by the unitary transform- 
ation (1 1). However since the wavefunctions differ, albeit by phase factors only, the 
equivalence between the two representations can only be ensured when complete basis 
sets are used in any calculation, i.e. complete molecular and photon states. Calculations 
with the Coulomb gauge Hamiltonian fit, equation (9, are often referred to as velocity 
gauge calculations, whereas the electric field Hamiltonian, fiE, equation (12), gives rise 
to the length gauge representation. 

For either gauge, Coulomb (velocity) or electric field (length), the appropriate 
zeroth-order wavefunctions for describing the nuclear dynamics on electronic 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



128 A.  D. Bandrauk 

surfaces in the presence of a quantized radiation field are the electron-field states 
(a, n )  = la)ln), defined as eigenstates of the unperturbed Hamiltonian A,, 

A, = fiel(r,  R )  + A,, (17) 

&(n) = nholn), (18) 

In equation (18) we have neglected the field zero-point energy for large photon 
number n, and finally (a) is designated as a collective quantum number for the 
molecular electronic states la). 

We now look for solutions of the total Schrodinger equation HI Y(E)) =El Y(E)) at 
the total energy E.  We expand the wavefunction in terms of the basic field-molecule 
states, taking into account equations (17-20), 

The F's are appropriate nuclear radial functions for propagation on the potentials 
of the electronic-photon states Ian). By substituting the expansion (21) into the total 
Schrodinger equation for any gauge, and premultiplying by a particular state (an),  one 
obtains the set of one dimensional second-order differential equations for Fan(R) for a 
diatomic molecule, or a single nuclear coordinate, 

where M is reduced mass of the nuclei. Here we treat rotationless molecules, although 
later on, we will explicitly illustrate calculations for different rotational quantum 
numbers, J ,  M. Equation (22) can be generalized to many nuclear coordinates by 
increasing the dimensionality of the differential equation (Kodama and Bandrauk 
1981) and to many laser modes by increasing the number of distinct frequencies o and 
corresponding photon numbers n (Nomura and Fujimura 1990). 

Equation (22) for the field-molecule representation constitutes a system of coupled 
equations which can be systematically expressed in matrix form as, 

F"(R)+ W(R)F(R)=O, (23) 
where the diagonal energy matrix elements are, 

The non-diagonal elements describe the interstate couplings, 

There are two types of matrix elements: non-radiative (V) with n = n', and radiative (V) 
with n#n'. Thus as a result of equations (4), (6) or (13), the radiative couplings A p or 
k - i  change the photon number by one only, n ' - n = A n =  f 1. Non-radiative 
couplings, such as non-adiabatic couplings remain diagonal in n, since these are present 
in the free molecule. These last couplings, as mentioned previously, can be non- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Molecular multiphoton transitions 129 

adiabatic or non-diabatic depending on whether the electronic representation is 
adiabatic or diabatic (Lefebvre-Brion and Field 1986, Nakamura 1992). Numerical 
solutions of the coupled equations (23) in any gauge or electronic representation sums 
automatically over all bound and continuum nuclear states of the electronic potentials 
V,(R). Thus only the electronic la) and photon In) states need be specified in any explicit 
calculation. Examples of this will be illustrated in later sections. 

Each field operator, the vector potential A, equation (6) or the electric field E, 
equation (13), are sums of annihilation h ( h =  - 1) or creation &+(An= + 1) harmonic 
oscillator operators. The first corresponds to absorption, the second to emission of 
photons. These two operators occur simultaneously in the radiative matrix elements 
V~,,,,,, equation (25), since in equation (5) we have A * p/mc or er * E in equation (12). 
Thus in the field-molecule or dressed state representation every electronic-field state 
la, n )  is coupled to two other states, Ib, n + 1) and Ib, n - 1). This is illustrated in figure 1 
where we show resonant absorptions (solid lines), la, n)+lb,n- 1) such that 
ho = E ,  - E,  at a fixed internuclear distance R. This is accompanied simultaneously by 
a non-resonant, also called virtual, transition to the Ib, n + 1) field-molecule states 
(dotted lines). Resonant emission Ib, n - l)+la, n )  also undergo virtual absorptions 
Ib, n - l)+la, n - 2 ) .  Neglect of the virtual transitions, i.e., keeping only the resonant 
transitions corresponds to invoking the rotating wave approximation (RWA). This 
considerably simplifies the numerical problem, i.e. reducing an infinite number of 
coupled equations to two dressed states only (box in figure 1). The exact treatment 
should also include spontaneous emission, the dashed line in figure 1, between dressed 

lo ,n+2> 

lo,n+ 1 > 

lo ,n-2> 6, lb,n-3> 

\a^+ 

rn 

rn rn 

rn m 

RWA 

Figure 1. Dressed (field-molecule) states for a two level system la) and Ib) interacting with a 
coherent quantum electromagnetic field composed of photon number states In). B(B ') are 
stimulated absorption and emission operators, whereas b+ is the spontaneous emission 
operator. =: resonant stimulated transition; . . +: virtual stimulated transition; -- -+: 
spontaneous emission. Box corresponds to rotating wave approximation, RWA. 
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130 A.  D.  Bandrauk 

states of the same photon quantum number. Thus dressed states include all laser 
induced or laser stimulated processes through the operators a@'), whereas spon- 
taneous emission produces photons independent of the incident laser through the 
operator b +  which creates photons into empty modes. 

We now estimate the accuracy of RWA, i.e. a two dressed state approach for each 
resonant absorption-emission process. The energy separation between a resonant and 
a virtual transition is 2hw, i.e. the energy between the states Ib, n+ 1) and Ib, - 1). The 
radiative coupling between the resonant states can be expressed in terms of the Rabi 
frequency, ow Thus in the length gauge this is defined in the classical limit for a classical 
field E(t) = E,  cos wt, as 

where E ,  is a constant amplitude. As we will show below, this can also be expressed 
equivalently in the quantum theory as, 

hwR = era&,, (26) 

where we have used the quantum expression (13) for E. Using now the standard 
definition of the field intensity (Loudon 1977), 

I = cnhw/ V ,  (28) 

(29) 

where c is the velocity of light, then the radiative coupling (26) is expressed as 

hw,(cm- I) = 1.1 7 x 10- 3[~(W cm - ')] "'erab(a.u.). 

wR is the Rabi frequency in cm-I, so that wRc is the rate of radiative transitions (s-l) 
(Allen and Eberly 1975, Chelkowski and Bandrauk 1988, 1990). The intensity 
is expressed in watts cmW2 and the transition moment rab in atomic units 
(1 a.u.=0-519 x cm). Thus for an intensity of 108W cm-' and a 1 a.u. transition 
moment, hw, = 12 cm-I or about 4 x lo'* radiative transitions per s. 

The RWA, will be valid provided the radiative perturbation, as measured by haR, is 
much less than the energy separation between resonant and virtual transitions, or 
equivalently the photon energy, 

Furthermore, since RWA implies a two electronic state description, states la) and Ib), 
then such a two state model will be adequate for each resonant absorption or emission 
if the radiative interaction ha ,  is much less than any neighbouring excitation energy. 
As an example, at current accessible intensities of 1015Wcm-2, then 
ha,  N 37 OOO cm- '1a.u. =4.6 ev1a.u. Thus with visible or ultraviolet light frequencies at 
these intensities both corrections to RWA and multistate excitations, including 
ionization, (Keldysh 1965, Dietrich and Corkum 1992) will become indispensable. It is 
clear from equation (29) that even at intermediate intensities such as 10" W cm-2, the 
radiative couplings approach vibrational energies (w, - 100-1000 cm- I)  even though 
RWA is valid. This means that even in a two electronic state description, considerable 
modification of the electronic surfaces, and consequently of the nuclear vibrational 
spectrum and dynamics can occur at moderate intensities. Such radiative perturbations 
can be shown to be more properly described by laser-induced avoided crossings (George 
et al. 1977, 1982, Bandrauk et al. 1978, 1981, 1988, 1989, 1993). 

In summary of this section, we emphasize that using a full quantum description of 
the field-molecule system, the total Schrodinger equation for the system reduces to the 

hw, << 2hw. (30) 
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Molecular multiphoton transitions 131 

coupled differential equations (22-25), where both radiative (field-induced) and non- 
radiative (radiationless) perturbations can be treated simultaneously for any coupling 
strength, i.e. from perturbative (weak) to non-perturbative (strong) interactions. The 
criterion for a radiative perturbative or non-perturbative regime is the Rabi frequency 
oR, defined in equation (29). For oR less than all natural frequencies of a molecule 
(rotation, vibration, electronic), then a perturbative treatment can be applied. 
Otherwise convergent numerical solutions of equation (22) must be called upon. This 
will involve using many electron-field states for high intensities. Proper boundary 
conditions, such as initial bound states, and (or) final continuum states very often need 
to be introduced to describe multiphoton molecular transitions. This problem will be 
addressed further on but we first examine the time dependent description of 
multiphoton processes and its correspondence to the time independent coupled 
equations (22-25) based on dressed states. 

3. Time dependent theory of transition amplitudes 
The passage from the time independent quantum photon theory to the time 

dependent large photon number limit, sometimes called the semiclassical theory 
(Loudon 1977, Mittleman 1982, Bandrauk 1993) is conveniently obtained from the 
special properties of the quantum harmonic oscillator, which very often reproduce 
exactly the classical observables (DeLange and Raab 1991). In the classical electromag- 
netic theory, one can write the Hamiltonian for the free field as normal modes, 
H = hoa*a, where the normal modes a are linear combinations of the field dynamical 
variables A and E due to the Maxwell relation: E = - l / c  i?A/at, i.e. E is to be considered 
as the momentum canonical to the coordinate A.  Thus one has, 

wA . o A  
a = - - @  a * = - + i E .  

C C 

The quantization condition emanating from the commutation rule, [a, 8 '1 = 1, 
equation (3) is equivalent to the commutation relation for the field operators 

[: -,E -1 =ih, 

and the concomitant Heisenberg equation of motion, equation (13). The time 
dependence of the quantum field operators 8, Bf, is obtained by performing a unitary 
transformation which removes the unperturbed field Hamiltonian A, from the total 
Hamiltonian (l), (this is often called the interaction representation (Loudon 1977, 
Mittleman 1982)). Thus from the commutation relations, equation (3), one readily 
obtains, 

ci(t) = exp (iA,t/h) ri exp ( - iA, t/h) = ci exp ( - iot), 

d + ( t )  = 8+ exp (+ iot), 
(33) 

(34) 
in agreement with the definition of 6 as an annihilation operator, ( A n =  - 1, 
A E  = - h a ) ,  and 8' as a creation operator ( A n  = -t 1, A E  = + hw). One can therefore 
reexpress the electric field operator E, equation (13) as a time dependent operator, 
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132 A .  D. Bandrauk 

In the quantum theory it is customary to look for representations which have as basis 
sets eigenstates of the relevant physical operators. We will now show that there exist 
eigenstates of the positive, E+ and negative E-, frequency components of the electric 
field operator, which is equivalent to finding the eigenstates of 6' and 6. These 
eigenstates are called coherent states (Glauber 1963, DeLange and Raab 1991). Thus we 
assume there exists states lz) such that 

so that 
6lz) =zlz), (216' = (ZIZ", (36) 

(37) (zlci+(t)-l i(t)z) = [z* exp (iwt)-z exp (-iwt)]. 
Setting z = IzI exp (i4), where 4 is the phase of the variable z, one obtains a wave 

amplitude like function, 

(z(E(2) = E ,  cos (ot - d),  (38) 

This simple exercise shows that the expectation value of the electric field operator E 
in the coherent state representation is a classical oscillatory wave with a time 
independent amplitude E,, as well defined frequency w and phase 4, typical of classical 
coherent waves (Goldin 1982). In addition each frequency component I?'@) has as 
eigenvalue the amplitudes 

-exp[k Eo i(ot--)]. 
2 

Expanding the coherent states in terms of the photon number eigenstates, one can 
show that the coherent states have the following properties, (Loudon 1977, Goldin 
1982, DeLange and Raab 1991). 

The probability P ,  of finding the nth photon quantum state in the quantum coherent 
state obeys a Poisson distribution law, 

P,=(z('"(n!)-'exp(-(z('). (42) 

This has a maximum at the value JzJ =nl/'. The mean square fluctuation of the field 
energy E, can be calculated as [(If;) - (Hf)2]'/2/(Hf) = 1/1z1= n-'''. Thus for large 
photon numbers the average field energy Ef = (n + 1 /2)hw has vanishing fluctuation for 
large n. We conclude therefore that one can express the time-dependent electric 
operator E(t), equation (39) for a quantum coherent state lz) as, 

(43) 

This corresponds to a coherent classical wave with the amplitude E, expressible in 
terms of photon number as, 

E ,  = 2rg)'''. (44) 
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Molecular multiphoton transitions 133 

This is in agreement with the quantum Rabi frequency expression, equation (27). We 
have thus shown the full equivalence between the time independent, quantum 
theory and the time dependent semiclassical approach. As an example of this 
equivalence, let us consider a lev (8000cm-') photon with intensity 
I=10-3Wcm-2. Then from equation (28) one obtains a photon density 
n/V=2 x lo5 This is already a high quantum number at this relatively low 
intensity. Clearly, the semiclassical expressions (43) and (44) for the quantum electric 
field is more than adequate. 

We turn next to the problem of establishing the correspondence between the time 
independent coupled equations developed in the previous section and the above time 
dependent theory. The connection between the two descriptions is obtained by the 
definition of the scattering (S-matrix) or transition (T-matrix) amplitudes for the formal 
time dependent S-matrix theory (Goldberg and Watson 1964, Watson and Nuttall 
1967, Levine 1969). The definition of the transition amplitude from an initial field- 
molecule state 14i) = ni) to some final state 14f) = 14f, nf) is given by 

Sfi= lim(4flYY+), (45) 
1-m 

where Y: is the exact scattering wavefunction (state) which evolves from the initial 
field-molecule state 14i) at t = - co. The transition amplitude is obtained by 
integrating over all coordinates: electron, photon and nuclear. 

An equivalent, time-reversed formulation yields the definition 

Sfi= lim ( Y;lbi), (46) 
f'-m 

where now 4i is the initial field-molecule state and Y i  is the exact scattering state that 
evolves backward in time from the final state Y; = 4f at t = + co. Both exact 
wavefunctions !P$$,) satisfy the same time dependence equation: 

where H is the full quantum time independent Hamiltonian, equation (1). In the two 
equations (45,46), the initial (final) field-molecule state is defined as the state which 
evolves from the initial (final) molecular state as the radiation field (laser) is 
adiabatically switched on, i.e. the initial (final) field and molecular states must be free, 
i.e. non-interacting at t = f cn. This is usually accomplished by defining the time 
independent interaction Fnt, equation (1) as 

V&) = lim Knt exp (-+I), 
&-10+ 

so that the effective time dependent interaction (48) is switched on and off at an 
infinitely slow rate (adiabatic switching; see Bandrauk (1993) for the gauge problem). 

Clearly equation (45) is most useful when the initial state is a continuum state, 
whereas equation (46), serves as the appropriate equation for half-collision problems 
where the initial state is a bound state and the final state is a continuum (dissociation, 
ionization, etc.) state. For molecular photodissociation, the time-dependent half- 
collision amplitude has been studied in detail by Shapiro and Bony (1985). The half- 
collision description has also been discussed by Krstic and Mittleman (1990) for the 
ionization of atoms. 
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134 A.  D. Bandrauk 

The exact, time independent scattering functions Y +(eJ are obtained from the exact 
time independent integral form of the Schrodinger equation, called the 
Lippman-Schwinger. Thus writing the total Schrodinger equation as 
( E  - @)I Y )  = ( E  - do - V)l Y )  = ( E  - H0)J4,) = 0 and rearranging, one obtains 

I y> = 140) + GOVI w = (1 + GVI40)> 

Go = ( E  - Go)- ', G = (E - A)- ', 

(49) 

(50) 

(51) 

where we have defined the resolvents or Green functions (operators), 

G =  Go + Go VG= Go + GVG,. 

Projecting onto some free (asymptotic) field-molecule state 4j # q50, equation (49) 
becomes 

(4jlY) =Goj(4jl VI Y ) ,  (52) 

(53) 
We now apply the scattering boundary conditions via the standard limiting procedure 
(Goldberger and Watson 1964, Levine 1969) 

where 

Goj= (4jlGol4j) = ( E  - Ej)-'. 

G t  = lim G,(E ic), (54) 

(RIG:jIR')=exp[_+ikj.(R-R)]/4nlR-R'I, (55) 

E'O 

k . =  J [I: -(E-njhw) 

G$ is an outgoing (+) ingoing (- l), spherical wave in coordinate space which thus 
defines the appropriate scattering function Y + ( - j  from the boundary conditions. The 
matrix element (4jl V1 Yu ' )  in equation (52) is therefore the transition amplitude which 
can be reexpressed in terms of the asymptotic free state 4o from which Y' evolved at 
times t= T co. We define formally the transition operator IT; 

or equivalently 

I ~ " > = I 4 o > + G t T I 4 0 ) .  

Comparing this new expression to the last equation (49), one obtains the general 
relation between Green functions, transition operators and interactions, 

GoT=GE (59) 

for which follows, using the equations (51), 

or equivalently 
T=(l+VG)V=(l+GV)v 

T= V +  VG,T= V +  TGoK 

Equations (59-61) are exact relations for the transition operator which allows one to 
calculate transition amplitudes in terms of the perturbation Vand the non-interacting 
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Molecular multiphoton transitions 135 

field-molecule eigenstates of H,,  equation (17). As an example, iteration of equation 
(61) generates the multiphoton perturbation expansion (Born expansion), 

T=V+VGoV+ VGoVGoV+ ..., (62) 

corresponding to one, two, three, etc., photon processes if Vis the radiative interaction. 
The rate of transition between zeroth order initial &i and final 4f, field-molecule states 
is defined as, 

(63) 
2.n 

W,, i =$(4fI TI&i)2d(Ef - Ei), 

where E,  = Eb + n,ho = E, + n,ho = Ei. 
In conclusion, we emphasize that in the adiabatic limit, i.e. slow turn on and off of 

the radiative interaction, transition amplitudes can be obtained from the time 
independent coupled equations (22) using as radiative matrix elements the large photon 
semiclassical expressions (27) and (44). An equivalent description in the adiabatic limit 
is to use the time dependent quantum description. Thus by using the unitary 
transformation (interaction representation), equation (33), one can remove the free field 
Hamiltonian H ,  from equation (1)  with the result that I?, via Vint, becomes time 
dependent. Thus in the time dependent case, one would obtain from equations (12), (33), 
and (39, 

A = Am + vi,(t), (64) 

vin(t) = -C eri - E(t), (65) 
i 

where Am is the molecular Hamiltonian fN + d, , (R) .  The appropriate expansion for the 
time dependent wavefunction would now be in the interaction representation, 

I y i n A t ) >  =exp ( -iA,tIh)I y(t)>, (66) 

=Cexp( -incot) P,"21a, n)Fn(R, t),  
n 

where P ,  is the Poisson photon distribution, equation (42). Thus the nuclear radial 
functions F,, will act as time dependent coefficients modifying this distribution. 
Inserting the expansion (67) into the time dependent Schrodinger equation (47) with the 
time dependent Hamiltonian (64,65) and function (66,67), one gets the following time 
dependent matrix equation for the time dependent nuclear states F,(R, t), 

d F  A2 
at 2M 

ih - ( R ,  t )  = -_ [F"(R, t)  + W(R, t)F(R, t)]. 

The equation (68) has the same form as the time independent coupled equations (23-25) 
except now the diagonal energy matrix is 

and the radiative matrix element becomes 

(70) 
2M 

Wn",a' ,n*l--  - h2 erabEO/2? 

where E, is the semiclassical electric field amplitude defined previously in equations 
(39) and (44). In obtaining equations (68) and 70) we are assuming that the incident field 
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136 A. D. Bandrauk 

is sufficiently intense so that the initial mean photon number ni and the mean final 
photon number nf as defined by the coherent state parameters Jzi I and ]zfl ,  equations 
(40-42) remain so large that the photon number fluctuations are always negligible. This 
allows the approximation P,1/’ N P j y  = Pi’’ in obtaining equation (68). Thus the time 
dependent equations (68) become equivalent to the time dependent equations (23) in 
the adiabatic limit, i.e. for the case of slowly varying field amplitudes. This is achieved in 
the limit of large photon numbers so that photon number fluctuations and photon 
number changes An = ni - n are always much less than the mean photon occupation 
number ni of the initial coherent state. 

In the case of ultrashort, intense laser pulses, the switch on time can be faster than 
molecular time scales, thus inducing impulsive transitions. In such a case the adiabatic 
theorem is no longer satisfied. This is concurrent with a difficulty in expressing the laser 
pulse adequately in terms of coherent quantum states, since such a pulse can only be 
defined in terms of a large number of radiation modes of frequency ok, k = 1, m with as 
many independent phases +k.  For such problems, direct solution of time dependent 
equation (47) with qnt(t) as the radiative perturbation with a arbitrary time dependent 
field E(t)  is a more convenient, if not, more efficient method. 

We will illustrate below examples of these two approaches, the t h e  independent 
dressed state approach which is most useful for long pulses, and finally the time 
dependent approach, which is most convenient for short intense pulses. The time 
dependent method, by the adiabatic S-matrix theorem, equations (45,46) would give 
the same result as the time independent dressed stzte approach for long pulses, where 
coherent electric fields can be well defined, i.e. according to equation (43), a well defined 
frequency and phase exist. However the time dependent approach would require much 
more computational time, as one would have to integrate the time dependent equations 
(68) beyond the natural time-scales of the molecule (electronic and nuclear), which time- 
scales define the natural frequencies of the stationary states of the free, unperturbed 
system. In the opposite limit of intense ultrashort pulses, stationary states are not 
possible to define. Energy levels become time dependent thus making it difficult to 
define proper time independent transitions amplitudes and rates, (Lami and Rahman 
1982, Aubanel et al. 1992, Bandrauk 1993 chap. 1.) In such a case, total transition 
probabilities for a given pulse length, and not rates, can only be defined. This will be 
illustrated in the last part of this article. 

4. Artificial channel method 
In the previous section we have established the equivalance of a time independent, 

dressed state approach to a time dependent method based on semiclassical (large 
photon number) expressions for field amplitudes and the adiabatic theorem in order to 
calculate multiphoton transitions rates, equation (63). The coupled equations (22-25) 
define the differential equations to be solved for a single nuclear coordinate and single 
laser mode (monochromatic), thus providing us with nuclear amplitudes F,,(R) for a 
particular electron-field state (an) propagating on a field-molecular surface 
(potential), &(R) + nho. 

In traditional spectroscopy, one starts usually in a well defined initial molecular 
bound state. Thus the appropriate initial boundary condition for the coupled 
equations is a bound state wavefunction. As final states, one must take into account the 
possibility of dissociation, either direct or via predissociation, so that the nuclear states 
Fa, must include continuum states in their spectrum. Since there is an infinite number of 
such states, a basis set expansion for F,, with subsequent diagonalization of the 
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Molecular multiphoton transitions 137 

ensuing matrix equations would not be practical. A more convenient method is the 
numerical solution of the coupled equations based on a scattering matrix (S-matrix) 
formalism, which thus rigorously takes into account all bound and continuum states. 
However, since S-matrix elements or equivalently transition amplitudes implies the 
presence of initial and final continuum channels, i.e. continuum entrance and exit 
channels, then to each initial and final bound state must be coupled an additional 
entrance and exit scattering channel, so that the coupled equations are augmented by 
these extraneous channels. This is the basis of the artijicial channel method which 
transforms bound-bound, bound-continuum transition into an S-matrix problem 
(Bandrauk and Atabek 1988, Bandrauk and Gelinas 1987, Miret-Artes et al. 1992). 
The procedure was first introduced (Shapiro 1972) to calculate Franck-Condon factors 
in direct photodissociation and was subsequently generalized to Raman scattering, a 
two photon process by (Alabek et al. 1980, Kodama and Bandrauk 1981), and to 
multiphoton transitions including non-adiabatic interactions in electronic states 
(Bandrauk et al. 1982, Bandrauk and Turcotte 1982, Bandrauk and Gtlinas 1986,1987, 
Bandrauk et al. 1991). It has now also been applied to predissociation problems (Du 
and Dalgarno 1991). 

We present the artificial channel method here as first applied to the effect of non- 
adiabatic interactions on multiphoton transitions (Bandrauk et al. 1982, Bandrauk and 
Gtlinas 1987) and recently to multiphoton dissociation ionization (Bandraux et al. 
1991). The method is succinctly summarized in figure 2 which illustrates a two photon 
transition with different energy photons, ko, and h o 2  from some initial state la) to 
some final state ( b )  via intermediate states IZ) which are themselves coupled radiatively 
or non-radiatively, or both to a continuum Ic). As a result of coupling between the 
bound states 11) and the continuum states Ic), the true intermediate states are called 
resonances, as they will acquire a finite lifetime (Levine 1969, Bandrauk and Atabek 
1988). 

Introducing the extraneous (artificial) channels ICl) and IC2) allows one to extract 
all physically relevant transition amplitudes from the transition amplitude Tclc2 
between these two entrance and exit channels. Thus using the integral equation theory 
of the T-matrix operator, equations (60), one can express Tclc2 as, 

(71) 
In this last expression, q l  and q2 are the zeroth-order elastic phase shifts for the 
scattering by the uncoupled channels ICl) and IC2). V,, and V,, are the extraneous 
weak couplings between the entrance (initial) channels ICl) and la) and the exit (final) 
channels lb) and lC2). Gab is the total resolvent operator between the initial bound 
state la) and the final bound state 16). Using the integral equation relations between the 
exact, G, and unperturbed, Go, resolvent operators, equation (5  1) and the exact relation 
(59) between T and G, one obtains the useful relation 

T C l C 2  =exp (iv]l) VlaGab62 exp (h2). 

G = Go + GOTGO. (72) 
Equation (72) allows one to calculate the matrix element Gab in terms of the physical 
two photon amplitude Tab, 

Gab = ( E -  E a  + ira)- qb(E- Eb + i f  b) - '. (73) 
In deriving equation (73), one assumes that the only perturbation of states la) and ( b )  
are due to the continua (C1) and IC2) and not due to the radiative transitions involving 
the intermediate state 11). In the coupled equation this is achieved by using asymmetric 
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A.  D. Bandrauk 

k T = V + VGV 

c2 

R w  

G = G,+G,TG, 

L/ L c ,  

- 1  
Gab = ( E - Ea + tro) -’ Tab( E - E b+ ir,) 

T = V + VG,T 

T = V,a(E-Eo+iS.o)-lTac 
c1c 

Figure 2. Lippmann-Schwinger integral equations. Transition amplitudes for two photon 
transition by photons of energies hw,, hw, between states la) and Ib) via the intermediate 
states 11) embedded in a continuum Ic). ]Cl) and JC2) are extraneous (artificial) channels 
for calculating transition amplitudes, T,,, the two photon transition amplitude and T,,, 
the photodissociation amplitude by S-matrix methods. 

couplings, Val,  hb#o but the reverse transition is not allowed, V,,= V,,=O. This 
procedure eliminates radiative perturbation of states la) and Ib) (see Kodama and 
Bandrauk 1981, Bandrauk et al. (1982)). The appropriate expressions for the energies of 
the states la) and Jb) perturbed only by the extraneous continua ]Cl)  and JC2) are 

E,= E: + AE,, Eb = EF -k AE,, (74) 

(75) AE,-iiT, = Re 1, + Im I , ,  AEb -iiTb = Re I b  + Im I b ,  

z - + ~  s (E-  'via'2dEci E,, + ie)’ 
I, = lim 

G$ = lirn ( E  - E,  + ie) - = PP ( E  - E J -  ’ - i d ( E  - E,). 
C + O  

(77) 
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Molecular multiphoton transitions 139 

In equation (77), the Green function Gg for the continuum states Ic) has a real, principal 
part, PP, implying non-resonant transitions, E # E,, whereas the imaginary part treats 
the resonant transition E = E,  due to the delta function 6. The net result is that state la) 
undergoes an energy shift, reminiscent of second-order perturbation theory, the real 
part of the integral I,, whereas the imaginary part is the corresponding width r,, 
consistent with a Fermi-Golden rule, Franck-Condon expression, 

Similar expressions for A E b  and fb are obtained, reflecting the weak perturbations of 
initial and final states la) and 16) by the artificial continuum channels ICl) and IC2). It 
is to be noted that one can write the Franck-Condon factor: V,,= ( ~ J T G ) ’ ’ ~  so that a 
two channel calculation of the T-matrix involving channels la) and Ic} only, i.e. K a  
gives the value of ra and consequently V,, from a standard resonance pole analysis of 
T,, (Levine 1969, Bandrauk and Atabek 1988). 

The equations presented above give access to the physical transition amplitude 
between the two bound states la) and Ib), i.e. at resonance E =  E,= Eb, 

q b  = - exp (- iq*)(~ru)1’2T,c~~~(~rb)1’2 exp (- iq2) . (79) 

All quantities on the right-hand side of equation (79) are calculated from numerical 
solutions of the coupled differential equations, as described below. Thus as illustrated 
in figure 2, Tab is a two photon amplitude. The equation (79) was previously used to 
obtain Raman-scattering amplitudes from an intermediate continuum Ic), for the one 
dimensional (Atabek et al. 1980), and for multimode systems (Kodama and Bandrauk 
1981). In both cases exact analytic expressions were also obtained for Tab (Raman) 
enabling one to check rigorously the numerical methods. The Raman scattering 
calculations were later extended to include predissociation, i.e. non-adiabatic coupling 
between the states 11) and Ic) in figure 2 (Bandrauk et al. 1982). This was the first exact 
calculation for Raman scattering amplitudes in diatomic molecules. 

Other interesting physical transition amplitudes which can be obtained by the 
artificial channel procedure are the two bound-continuum transition amplitudes T,, 
and K b .  The first is obtained from Tctc, i.e. from equation (61), one can write, 

T,,c=exp(ill1) ~l,(E--E,+irn)-lTno (80) 

(81) 

so that on resonance? E = E, = E,, 

T,, = - i exp ( -iql) (nf,)1’2Tclc. 
Again all expressions on the right-hand side can be numerically calculated? giving the 
transition amplitude from the initial bound state la) to the continuum Ic) via the 
intermediate bound states 11). In the absence of these intermediate bound states, then 
T,,= V,,, i.e., the Franck-Condon factor between la) and Ic). This was the original 
procedure used by Shapiro (1972) to calculate Franck-Condon factors. It is to be 
emphasized that equation (81) gives a transition amplitude Tc and not a transition 
probability such as T,= n[T,J2,equations (75-77), which is the standard resonance pole 
method to calculate transition probabilities by coupled equations in dynamics. Thus by 
the prersnt artificial channel method, all phase information is retained in the 
amplitude, whereas such information is lost in the resonance pole method. 
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140 A. D. Bandrauk 

Thus calculation of TClc gives access to the numerical evaluation of amplitudes T,, 
for direct photodissociation processes or for photodissociation mediated by inter- 
mediate resonances /I), such as in predissociation (Bandrauk and Child 1970, 
Bandrauk et al. 1981, 1982). In like fashion, one could obtain the continuum-bound 
transition amplitudes x b  from equation (61), 

TCC2= Tb(E-Eb+i rb ) -11 /b2  exp(iq2), (82) 

which a t  resonance, E = Eb = E, gives 

Tb= -iTccz(nrb)- '"exp(-iy2). (83) 
The amplitude x b  would therefore correspond to predissociative or radiative 
recombination into the resonances 11) followed by radiative absorption (emission into 
the final bound state Ib). 

In summary, equation (8 l), (82) and (83) represent multiphoton transition 
amplitudes for bound-bound transitions, bound-continuum or continuum-bound 
transitions which can be obtained exactly from numerical calculations of S or T matrix 
elements between the various continua Ic), ICl) and IC2). Figure 2 can be generalized 
to multiphoton transitions by introducing more intermediate bound state potentials 
KJ(R), more continuum potentials Vck(R) and radiative or non-radiative couplings 
between these. We stress the fact that in the dressed state representation, the crossing of 
V'(R) and V,(R) could represent also a radiative transition. In view of the formal 
analogy between radiative and non-radiative matrix elements, equation (25), then both 
types of couplings enter into the numerical method simultaneously. 

The input into the coupled equations (22-24) now augmented by two artificial 
channels ICl) and IC2) are the diagonal matrix elements, equation (24) which can be 
generalized to include angular momentum, 

2M J(J + 1) 
Fi(R)=,[E- V,(R) - niho i ]  - ___ h R 2  ' 

(84) 

The non-radiative non-diagonal matrix elements can be written in a diabatic 
representation, as potential matrix elements, 

where K,{R) = (4i(r, R)lfie,(r, R)@J(r, R ) )  is the matrix element for the electronic 
Hamiltonian in a diabatic basis. Thus in this basis, the diabatic electronic states are not 
eigenstates of I?,, but correspond very often to intuitive chemical states such as the 
covalent, ionic valence bond states of alkali halides (see for example Bandrauk and 
Gauthier 1990). Tn practice, any two non-crossing adiabatic surfaces obtained from the 
usual ab initio adiabatic calculations (Yamashita and Morokuma 1991), with residual 
non-adiabatic couplings depending on derivatives ajaR, can be transformed into 
crossing diabatic surfaces with a residual non-diabatic interaction Kj(R)  operative 
between them (Bandrauk and Child 1970, Lefebvre-Brion and Field 1986, Bandrauk 
and Gelinas 1987). The radiative coupling for a diatomatic molecule can be written as, 
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Molecular multiphoton transitions 141 

f2 is the electronic angular momentum projection on the internuclear axis, 2 is the field 
polarization with respect to laboratory axes, d ,  is the m=O, f 1 component of the 
electronic transition moment rub along the molecular axis, and finally y is the field 
dependent unit conversion factor in equation (29), i.e. y =0.585 x [Z(W cm-2)]’iz 
(a.u.)-’. (Note this is 0,/2 as given by equation (27)). The Clebsch-Gordan coefficients 
in equation (86) fix the selection rules A J = O ,  1; dm=O, f 1 (Herzberg 1966, 
Lefebvre-Brion and Field 1986). 

Thus using appropriate transition moments, either from spectroscopic data or 
ab initio electronic calculations, one uses as input for the coupled equations (22-25) 
augmented by the artificial channels, the diagonal electronic potentials Wii(R), equation 
(84), the diabatic non-diagonal non-radiative potentials Fj(R), equation (85) and the 
non-diagonal radiative potentials (2M/h2)KjR), equation (86). Equations (22) are 
completely diabatic, with both radiative and non-radiative perturbations appearing as 
non-diagonal potentials, functions of R, the internuclear coordinate. Thus both 
radiative and non-radiative couplings appear on an equal footing, and for any coupling 
strength. In the limit of large radiative and (or) non-radiative couplings, a more efficient 
representation is the adiabatic representation, with avoided crossings now appearing 
instead of the diabatic crossing exhibited in figure 2 between states 11) and Ic). In an 
adiabatic representation, both electronic state avoided crossings (non-crossing rule of 
states of same symmetry, (Lefebvre-Brion and Field 1986)) and laser-induced avoided 
crossings (see 98) (George et al. 1977, 1978, Bandrauk and Sink 1978, 1981, 
Bandrauk and Atabek 1988, Bandrauk and McCann 1989), remain coupled by non- 
adiabatic interactions dependent on nuclear momenta, i.e. (@*/ia/aR/$;’)>a/aR where 
Fd are the corresponding adiabatic electronic states. It is possible to express the 
coupled equations (22) in a complete adiabatic representation (Nguyen-Dang et al. 
1989, 1991). Such a time independent adiabatic representation is very useful when 
electronic transition moments diverge as in the case of the lso, to 2p0, transitions in 
H, and H: (Bandrauk et al. 1991). In this case the dipole transition moment erab = eR/2 
in the electric field gauge, whereas in the Coulomb gauge, the momentum transition 
moment epob = [( V,(R) - V,(R))/ho]er,, (equation 16), is convergent asymptotically due 
to the degeneracy of the og and 0, states. However since a two-electronic state model 
may not be sufficient to ensure gauge equivalence, then the adiabatic electric field 
representation of Nguyen-Dang should be superior as all couplings, radiative and non- 
radiative are localized around the diabiatic crossing points, which is a special feature of 
adiabatic representations (Bandrauk and Child 1970, Lifebvre-Brion and Field 1986). 

The disadvantage of the adiabatic representation is that derivatives of the nuclear 
functions, aF,,/dR must be evaluated. In our work we have therefore adhered to the 
diabatic representation where all couplings, radiative and non-diabatic are of pure 
potential type (polynomials of R). Thus at the formal level, radiative and non-radiative 
couplings are analogous, so that radiative bound-continuum transitions, i.e. photodis- 
sociation processes can be treated as diabatic predissociation problems (Bandrauk and 
Sink 1978, 1981, Bandrauk and McCann 1989). All one needs to do is to specify the 
functional forms of the diabatic electronic potentials T/(R), the transition moments erij 
and the non-diabatic couplings (85). The coupled equations (22) including the artificial 
channels coupled to the initial (final) potentials &b)(R),  are integrated numerically by a 
Fox-Goodwin algorithm (Fox 1957, Norcross and Seaton 1973). The numerical 
continuum functions are then compared with the analytic asymptotic functions, 

kj”2F~’(R)=s in(k jR-J7c/2)6 i j+  Rijcos(kjR-J7c/2), (87) 
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142 A.  D. Bandrauk 

k j =  lim [ Wj,(R)] l I 2 .  (88) 
R + m  

The coefficients R ,  define a scattering matrix S =(1 +iR)(l -iR) from which the 
transition amplitudes follow: Sij= d i j -  27ciTj (Levine 1969, Norcross and Seaton 1973). 

Thus in conclusion, adding to the physical channels the two extraneous continuum 
channels ICl) and IC2) as entrance and exit channels for the initial la), and (or) final Ib) 
states, we can obtain numerically the transition amplitudes TcIc2, Tclc, Tcc2 from 
which one extracts the physical multiphoton transition amplitudes T a b ,  T,,, Kb. These 
amplitudes contain all the phase information due to the various radiative and non- 
radiative processes. The present method therefore allows one to calculate individually 
separate amplitudes, and to analyse their physical content individually. Total 
probabilities are then obtained by summing first all amplitudes from given initial to 
final states and then squaring the total amplitude according to equation (63). 

The method is most useful when the initial state la) is unperturbed in the 
multiphoton process. We remind the reader that time independent transition rates, 
equation (63) can only be obtained in the adiabatic limit (see 9 3), so that the initial and 
final states are stationary. For the physical continuum Ic) this creates no problem, since 
the non-diabatic interaction is localized around the crossing point (figure 2). However 
for radiative transitions, at high intensities (large Rabi frequencies, coR, equation 27), 
dynamic Stark shifts can become important. The artificial channel method has been 
generalized for this non-perturbative initial state. By choosing the artificial and true 
initial state to be identical, it is possible to search for the initial state in all the stationary 
dressed states, such as in figure 1 (Bandrauk and Turcotte 1985, Bandrauk and Atabek 
1988, Miret-Artes et al. 1992). This general artificial channel method, involving both 
extraneous continuum and bound channels added to the the physical channels allows 
one to treat the strong-field, overlapping resonance, non-perturbative, time independ- 
ent regime. Of course as we have pointed out in the previous section, non-perturbative 
radiative transitions often involve short pulses, for which time dependent calculations 
are then more appropriate. 

In many cases it is however often possible to identify weak (perturbative) and strong 
non-perturbative radiative transitions. This was the case in the 10 photon photoioniz- 
ation of H, where the first transition was a weak non-resonant five photon transition 
followed by strong resonant single photon transitions between Rydberg and doubly 
excited electronic states (Bandrauk et al. 1991). Equation (81) was used in a many 
dressed state calculation (up to 100 coupled equations on a CRAY-XMP supercom- 
puter) to obtain all the photodissociation and photodissociation-ionization ampli- 
tudes in the process H, + 10ho=H: f e - .  It was proven in this artificial channel 
coupled equation calculation that laser-induced avoided crossings (see 0 6) play a 
predominant role in creating anomalous kinetic energy distributions of protons at high 
laser intensities, I - loi3 Wcm-’. This anomalous effect had been experimentally 
discovered previously (Brlcksbaum et al. 1990). 

Introducing the detailed quantum rotational couplings, equation (86) allows one to 
calculate the transition amplitudes for specific rotational quantum numbers J and M. 
Such detailed amplitudes enter into calculations of multiphoton photodissociation 
angular distributions. Thus two-colour (two photon frequencies o1 and a,), numerical 
experiments were carried out to examine the effect of high laser intensities on angular 
distributions of the photodissociation of Li, (McCann and Bandrauk 1990, 1992). 
Previous one-photon angular photodissociation angular distributions for Ar: 
(Bandrauk and Turcotte 1983) showed for the first time the effect of laser-induced 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Molecular multiphoton transitions 143 

resonances as a cause of anomalous angular distributions. In the two colour numerical 
experiments, the first laser (ol) was considered to be weak in order to select well defined 
rovibration (u, J )  excited levels, followed by an intense low frequency (0,) second laser 
coupling two nearby electronic states via a large transition moment. Thus equation (81) 
was used for this two photon transition in order to calculate the photodissociation 
amplitudes as a function of rotational quantum numbers and laser intensity. The 
differential two-photon dissociation cross-section was obtained and was shown to 
produce at high intensities new, non-classical angular distributions, (McCann and 
Bandrauk 1990,1991) quite different from the usual classical distributions (Zare 1988). 
Simultaneously, an intensity dependence of the isotope yield in photodissociation was 
found to be quite nonlinear with respect to the second laser (02) intensity (McCann and 
Bandrauk 1990). 

In conclusion, we emphasize that the coupled.equations (22-25) using the artificial 
channel technique can furnish exact multiphoton transition amplitudes. The necessary 
initial data are the relevent electronic potentials, the radiative transition moments and 
the non-diabatic non-radiative couplings. The numerical integration of the coupled 
equations gives as output transition amplitudes and also dressed state spectra, since 
these will appear as resonances when the transition amplitudes are calculated as a 
function of energy (or laser frequency). It is to be emphasized that the input data are not 
spectra but potentials only. The eigenstates, or equivalently the dressed states, and their 
eigenenergies, i.e. the spectra are obtained from the numerical solution of the coupled 
equations. In this sense, we can characterize this method as computational spectroscopy. 
In the next section we present a detailed example of a multiphoton calculation, where 
one uses the principle of interference of multiphoton amplitudes in order to control a 
photophysical process. 

5. Laser control of predissociation 
One of the fundamental predictions of quantum mechanics is the interference 

between transition amplitudes (Feynman 1960). An interesting result of this inter- 
ference is the enhancement or suppression of transitions through the variations in the 
relative phases of the transition amplitudes. The exploration of such effects in order to 
influence photochemical reaction paths, has been recently suggested (Brumer and 
Shapiro 1989). A scheme relying on the coherence between one and three (1 + 3) photon 
transitions (03 = 3w,), was proposed to control photodissociation products (Shapiro 
et al. 1988). A similar scheme has appeared in the atomic physics literature where 
experimental laser phase control of atomic ionization was first demonstrated (Chen 
and Elliott 1990, Chen et al. 1990). Finally this same (1 +3) interference scheme has 
been carried out recently to provide the first example of coherent phase-control of 
molecular multiphoton ionization (Lu et al. 1992). In the (1 + 3) scheme, even (g) states 
are coupled radiatively to odd (u) states. We have recently proposed a 2 + 4 scheme 
coupling states of same symmetry (Bandrauk et aE. 1992), based on numerical 
calculations by the artificial channel coupled equations method described in the 
previous section. 

The multiphoton process proposed is illustrated in figure 3 in the field-molecule or 
dressed state representation for the C1, molecule. The dressed molecular energy 
potentials are therefore drawn on a total energy scale (field + molecule), appropriate to 
the coupled equations (22-25). Two processes are distinguished in figure 3. Firstly, a 
resonant two-photon excitation of frequency o, occurs from the ground state of Cl,, 
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lIIu-O, 
J=1,2 

A .  D. Bandrauk 

In ,-20, 

J=l, 3 
2n ,-2 0, 

2n ,-4 
J=2,4 

I I I I  

J=2,4 

Figure 3. Dressed state representation of 2 + 4  photon interference of the excitation of I'Cp', 
v = O ,  J = O )  to In,, C, J = 2 ) .  w,=2w,. Zg+l-I+rIg transition is resonant and is 
represented by horizontal arrow. Z,+Xu+rIg+Zu-+IIg is non-resonant and is represen- 
ted by oblique arrows. lC,, 2C, and lII,, 2n, electronic states interact non-diabatically. 

the X X l  electronic state, via the repulsive I n ,  state to some final vibrational level, v,  of 
the 2II, state which then predissociates by non-radiative interaction with the repulsive 
1 II, state. Secondly, a non-resonant four-photon transition of frequency o4 proceeds 
first from the :LTl ground state to the 2C: highly excited valence state. This state 
interacts non-adiabatically with the lC:, Rydberg electronic state (Peyerimhoff and 
Buenker 1981). These two states are radiatively non-resonantly coupled to the ng 
states, which again recouple radiatively (again non-resonantly) to the C, states, and 
finally one last radiative transition leads to the same predissociated level, v,  of the IIg 
states as in the two photon process. Given that all these transitions are non-resonant it 
is important to note that the XE,'-+2XC: transition moment is large. This non- 
resonant transition is strong and is responsible for the anomalous Raman line 
intensities in C1, (Ghandour et al. 1983). 

In the (2 t4) scheme, we rely on this intense (C,' +C:) non-resonant transition to 
drive the four-photon transition efficiently. Thus one requires only moderate intensities 
to obtain a four-photon transition amplitude T4 comparable, in magnitude to T,, the 
resonant two-photon transition amplitude. T2 is initiated by a first weak transition 
moment, (XC; lerll nu) -0.1 a.u., followed by a large moment ( lII,lerl In,) 1:eR/2, 
similar to the XC,t+2C: transition moment (Bandrauk and Gelinas 1987). Previous 
experimental work on the spectroscopy of the predissociated Z l l ,  state (Li e l  al. 1988) 
allows for an adequate estimate of the nonradiative coupling between the IIg states. 
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Molecular multiphoton transitions 145 

The photopredissociation transition amplitudes from the initial bound state 10) to 
the final continuum state Ic) can be expressed as a Born series, (see equation 62) in 
terms of the radiative V ,  and non-radiative V,, interactions, 

(OlT2lc) = (01 V2G,2(nu -hw,)V2[G,2rIg-2ho,)1/,,+ Illc), 

X V4G4(Z, - 3hw4)V4[G3ng -2ho,)V,, + 111~). 

(89) 

(90) 

(01 T41c) = (01 V4C4(C, - hw,)V4G4(II, - 2hw,) 

The continuum Green function C: appears only in the two photon amplitude T2 and 
has been previously defined in equation (77). The bound states Green functions 
appearing above are defined as, 

and the resonance condition is 
G4=(E-Ho)- ' ,  (n,lG~ln,)=(E-nhw-E,+iT,)-' ,  (91) 

E = Eo + 2hw2 = Eo + 4hw4 . 
r, is the predissociation line width of the final level u in the rI, electronic states. The last 
two terms in equation (89) and (90) reflect the two possible pathways to the dissociative 
nuclear level Ic) in the ng states, i.e. directly (+ 1) or via the predissociating bound state, 
u, though the term G,V,,. 

The half-collision equations (22-25) for the processes illustrated in figure 3 are 
converted into a scattering problem by introducting an artificial channel IC,), which is 
weakly coupled to the initial state IXC,', v = 0, J = 0). The amplitude T2 is modulated 
by the phase factor exp (i4) representing the phase difference between the two coherent 
laser beams, 

E ,  = E0(w2) exp [i(w,t - 4)], E,  = E0(w4) exp (iw,t). (92) 

We emphasize that the amplitudes T, and T4 contain all the appropriate information 
about molecular potentials, radiative and non-radiative couplings. 

The total transition amplitude under the influence of the two laser fields, equation 
(92) can be written as: 

Cancellation will occur whenever lT,l = 1 T41 and 

T= T, exp (i4) + T,. 

arg (T,) + 4 - arg ( T4) = 7c(modulo 27& 

(93) 

(94) 
and enhancement when the two components of (93) are in phase. 

All relevant potentials and transition moments were obtained from the previously 
published ab initio calculations (Peyerimhoff and Buenker 198 1). The non-radiative 
coupling matrix elements between the X: and ll, states, see figure 3, were obtained by 
deperturbing the 2 x 2 adiabatic ab initio potentials (Bandrauk and Gtlinas 1987), into 
diabatic electronic potentials with corresponding non-diabatic couplings I/ij(R) 
between them. As a consequence, both radiative and non-radiative couplings become 
equivalent non-diabatic couplings, the first non-diagonal in photon number, whereas 
the second leaves the photon number unchanged. From the ng state spectra, a non- 
diabatic coupling of V, , = 350 cm ' gave energy level and corresponding widths, 
obtained by a resonance analysis of a two channel S-matrix calculation, in good 
agreement with the experimental spectra (Li et al. 1988) 

The artificial channel method described in the previous Section was used to 
calculate the photon, T2 and four photon, T,, amplitudes as a function of intensity of the 
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146 A.  D. Bandrauk 

two laser beams, Z,(m2) and Z4(w4). Then using equation (93) with a variable phase 4 led 
to beats in the total transition probability (TI2. In figure 4 we present results for a fixed 
value of Z4=5 x 108Wcm-2. Such an intensity gives a resonant electronic Rabi 
frequency, equation (27) of about 2cm-1 per atomic unit of transition moment. This 
radiative coupling produces negligible energy shifts of perturbations to the initial state 
since the transition is non-resonant. This makes use ofequation (81) an exact method to 
calculate the photopredissociation amplitude from the XEz levels to the Il, continuum 
states. 

Thus fixing I,, one has two independent parameters: 12, the intensity of the second 
two photon beam (a,) and 4, its phase relative to the I ,  beam. We report in figure 4 
results for the J=O to J = 2  transition. The four photon transition gives products in 
J = 2 and J = 4, whereas the two photon transition produces only a J = 2 final state. 
Thus only the J = 2 angular momentum state can show any interference effect. In fact, 
the invariance of the J = 0 to 4 transition amplitude with respect to the phase 4 was 
used as a check of the consistency of the numerical results since this transition is only 
produced by the four-proton beam of frequency o4 and intensity I,. In figure 4 we 
show the result obtained by the coupled equations for the photopredissociation 
probability from the initial IXC,', u=O, J =0) bound state to the final IlI'I,, E ,  J = 2 )  
continuum state, where E = = E ,  + 2hw, = E ,  + 4ho,. The non-adiabatic coupling V, 
= 350 cm-l is considered to be of intermediate coupling strength (Bandrauk and Child 
1970). Figure 4 shows the photodissociation probability through the u = O  level of the 
2II, electronic state as a function of I ,  and 4. An absolute minimum, corresponding to 
a decrease by at least four orders of magnitude is found at I ,  = 7500 W cm-' and 
4 = 0.38~. Figure 5 summarizes the overall photopredissociation probabilites 

l e -14  

le- 15 

l e -16  

100 

6 

Figure 4. Photopredissociation probability of u = 0  level of 2II, electronic state for 
non-diabatic coupling V, , = 350 cm- I ,  I ,  = 5 x 10' W cm ~ '. Minimum occurs at 
I ,  = 7500cm- ', 4 = 038% w= 20, =40, = 66421 cm - I.  
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- -15 - 
3 
'1 3 

3 
2 -16 - c - 
d 

-17 - 

-18 - 

147 

-19 ; 

'P ( *  II radians)  

Figure 5. Photopredissociation probability of u=O-5 levels 2n, electronic state for non- 
diabatic coupling V,,=350cm-' at intensities I,=7500Wcm-2, I , = 5  x lo8 W ~ r n - ~ .  
V =  0 , O ;  A, 1; D, 2; A, 3; 0 ,4 ;  and 0 ,  5. 

through the various 2KI, vibrational levels as a function of d, for fixed intensities 
14=5 x lo8 Wcm~2,I2=7500Wcm~2.Thusthedeepminimumforu=O,infigure4is 
the predominant feature. In fact figure 5 shows clearly a sharp minimum (suppression) 
at 6 = 0387~ and also a slight maximum (enhancement) at d, = 1.387~ in the predissoci- 
ation of u = 0. Thus as a general rule, as seen from figure 5, for fixed intensities I 2  and I,, 
only one level of the 2n ,  state undergoes complete suppression of predissociation and 
also the most enhancement. This same behaviour is found for other non-diabatic 
coupling parameters V,, between the l-Ig electronic states (Bandrauk et al. 1992). 

We conclude by emphasizing that in spite of the complex dependence of the 
transition amplitudes, T, and T4, on the relative laser beam phase 4, due to the non- 
diabatic dynamics of the KIg states of Cl,, phase interference of radiative transition 
amplitudes remains operative. Thus in equations (89) and (901, both the continuum 
Gc(IIu) and the bound G,(KI,) Green operators (functions) have real and imaginary 
parts. The imaginary part of G,, equation (77) comes from the resonant continuum 
states ofthe nu repulsive state (figure 3) whereas the imaginary part of G,, equation (91), 
come from the finite width and therefore lifetimes of the predissociating vibrational 
levels v of the rI, states. These imaginary parts of the Green functions are in large part 
responsible for the complex behaviour of the phases (arguments) of T, and T4, equation 
(94). Nevertheless, figure 4 and 5 show it is possible to .efficiently suppress the 
predissociation of a particular vibrational II, level at a definite angle 4. Clearly, 
suppression of the photopredissociation channel should show up as the elimination of 
the high energy kinetic component in the photodissociating IT, and nu states, figure 3. 
Furthermore suppression of particular rovibrational levels might be used to decongest 
predissociation spectra. 
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148 A.  D. Bandrauk 

6. Photodissociation as predissociation 
As suggested by the coupled equations (22-25) in the dressed state formalism, 

multiphoton processes correspond to redistribution of energy between the field and 
molecular states. Thus as illustrated in figure 6 for the photodissociation of H:, the 
ground electronic-vibrational photon bound state I’C,’, u, n) of total energy E = E,  
+ nkw is degenerate with some (n - 1)  photon-nuclear continuum state I’CC:, c, n - I )  
of total energy E = E, + (n - 1). On a total energy scale, the field electronic potentials 
[ V(’C,’) + nhw] and [ V(’C,’) + (n- l)hw] cross at some distance R,, the radiative 
crossing point and are coupled via the radiative interaction dE,/2 where d is the 
electronic transition moment, (’C,+(er(’C:) and E,  is the maximum electric field 
amplitude expressed in photon numbers by equation (44). We thus arrive at the 
conclusion that photodissociation is the analog of predissociation (Bandrauk and Sink 
1978, 1981, Bandrauk and Atabek 1988, Bandrauk and McCann 1989). Such a 
situation, figure 6, corresponds to the classical case of a discrete state embedded in a 
continuum, the time evolution of which can be studied by the method of Green 
functions (Goldberger and Watson 1964, Mower 1966). 

If originally the initial bound state was in the eigenstate la) of some Hamiltonian 
A,, e.g. equation (17) then though some time independent perturbation V(radiative and 
(or) non-radiative), equation (25)), at time t it will have evolved according to the 
expression, 

where A= A, + K and fi,la) = E:Ja). The decay amplitude I , ( t ) ,  i.e. the probability 
amplitude that the system starting at t = O  in la) remains in this state after t is defined by 

I ~ ( t ) )  = exp ( -  iAt/h)la>, (95) 

~ , ( t )  = (a1 Y(t)> = (alexp (- iAt/h)la>. (96) 
This may be expressed in terms of the time independent (energy dependent) Green 
functions introduced in equations (50-51), 

1 r w  

16.8 

- 16.0 
2 
w v 

-. - 

15.2 

I , ( t ) = A  J exp( -iEt/h)G,,(E)dE. 
2m -a 

(97) 

d 
V 

6 
5 
4 

0.8 1.2 1.6 2.0 
R (.4) 

Figure 6. Laser-induced avoided crossing between I’X;, n> and I’XC,‘, n - 1) dressed electronic 
potentials in the direct photodissociation of H,+ at wavelength A= 213 nm, for intensities I 
(Wcm-’): (a) 3 . 2 ~  lo”, (b) 2 . 6 ~  Also shown are adiabatic (-) and 
diabatic vibrational levels (. . . .), ud. 

(c) 6 x  
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Molecular multiphoton transitions 149 

The transition amplitude between the state la) and the continuum Ic) is given by 
1 r m  

Iterating equation (51) which defines the exact G with respect to the unperturbed Go, we 
get 

G(E)= Go(E)+Go(E)VGo(E)+Go(E)VGo(E)VG(E), (99) 
from which it follows exactly by evaluating matrix elements (see Bandrauk and 
Turcotte 1982), 

G,,(E)=(E- E,--iT,)-', (100) 
where E,  and r,, are the energy shifts and widths defined previously in equations 
(7477). Examples of models for which these expressions can be evaluated analytically 
have been reported previously (Sink and Bandrauk 1978, Kodama and Bandrauk 
198 1). The direct photodissociation Green function, G,,, can be obtained from equation 
(5112 

Ka/ (E  - E, + iE) 

c + o +  (E-E,+iT,) ' 
G,,(E) = G: I/,,G,, = lim 

The transition amplitudes (97) and (98) are found next by performing contour 
integrations in the lower half energy plane, i.e., Im E < O  in order to encircle the 
resonance pole at E=E,- iT , .  One thus obtains readily from the residue theorem 
(Levine 1969), 

f , ( t )  = exp (- iE,t/h) exp (- f ,t/h), (102) 

P,(t)=lf,(t)12=exp(-?-T,t/h). (103) 

from it follows that the population of state [ a )  evolves as, 

The photodissociation amplitude is obtained in like fashion by considering the two 
poles in the lower half-energy plane in equation (101), i.e. at  E,-ie and E,-iiT,. The 
resulting integration gives: 

{exp ( - iE,t/h) - exp [( - i E ,  - T,)t/h]}. K a  
I c a ( t )  = ( E ,  - E,  + ir,) 

Integrating the square of this expression over the continuum energy E, to get the total 
photodissociation probability P, from state la) (we assume that V,, and therefore A E ,  
and ra are independent of energy (see equations 74-77), thus avoiding extra poles from 
new bound states created by energy dispersion of these parameters (Laplante and 
Bandrauk 1976)), we obtain 

( 105) 
4 v  l 2  P,(t)= ~ I c a ( t ) ~ 2  dE,='"[l -exp(-Tt/h)], s r, 

Since r, = XI KJ2, equation (78), we obtain finally the kinetic equation, 

P,(t)= [l -exp (- 2f, t /h)],  P,+ P,= 1. ( 1 c q  
We further note, that for constant width T,, the dissociation rate dP,/dt = (2ra /h) ,  is also 
constant. 
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150 A .  D. Bandrauk 

The above results are exact only for a model of one energy bound state la) coupled 
to one continuum mainfold Ic) (which itself contains an infinite number of states of 
energy EJ. Molecular systems are multilevel systems, so these expressions must be 
generalized. More general expressions for the Green functions have been obtained for 
multilevel systems, relating thus the artificial channel coupled equations method 
(section 4) to time dependent theory (Bandrauk and Turcotte 1985, Bandrauk and 
Atabek 1988). In general, more than one bound state must be considered, and for strong 
perturbations the phenomenon of overlapping resonances, (E,  - Eb)--Nra, rb can occur 
(Fano 1961, Levine 1969, Miret-Artes et al. 1992). For strong fields, one must therefore 
always consider renormalization of the spectrum since the laser field can even create 
new bound states by the mechanism of laser-induced avoided crossings (section 8). 
Furthermore, more and more experiments are being carried out with short laser pulses 
(Scherer 1991, Zewail 1991), so that a complete time dependent theory is more 
convenient as one can now describe multiphoton spectroscopy in terms of the pulse 
parameters, shape, duration and phase (Warren 1993). 

7. Solutions of time-dependent Schrodinger equations 
As pointed out in the previous sections, recent developments in laser physics and 

chemistry have pointed out the need for efficient algorithms to solve the time dependent 
Schrodinger equation (47) with a time dependent perturbation, equations (64-65). In 
general in describing molecular multiphoton transitions, one has to have recourse to a 
linear parabolic partial differential equation, which can be written from equation (68) 
as, 

In the above, Vmm(K) is the time-independent field-free molecular (electronic) potential 
and Vmrn,(R, t.) is the time-dependent semiclassical electromagnetic field-molecule 
interaction, 

V r n m 4 R  t )  = drnrn,(R)E(z, t). ( 108) 
R is the ensemble of molecular nuclear coordinates whereas z is the electromagnetic 
field coordinate (beyond the dipole approximation), and d,,.(R) is a multidimensional 
transition moment representing transitions between different eiectronic states of 
quantum number m. Expression E(z, t )  in terms of a single mode, coherent quantum 
field state would give the time dependent dressed state equations, (68). 

For short pulses, by the Fourier transform theorem, the field envelopef(t), where we 
now write 

E ( r , t ) = f ( t ) E , c o s ( k - z - a t )  (109) 
would contain many frequency components distributed around the central frequency 
with a frequency spread Ao=2n/z, where T is the time duration of the pulse. This 
implies therefore a multimode description (Goldin 1982), complicating the coupled 
time dependent dressed state equations (68). A more straightforward method is 
therefore to solve equation (107) directly. 

Of course the laser pulse itself satisfies an equation, Maxwell’s wave equation which 
for polarizable media is written as (Allen and Eberly 1975, Lamb 1980). 
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Molecular multiphoton transitions 151 

where E = E(z, t )  is the field, and P = P[E(z, t ) ]  is the field induced polarization for pulse 
propagation along the z-axis. The polarization is in general a nonlinear functional of 
the pulse shape and is determined by its microscopic definition 

P = no( Y(t, r, R, E) ldY( t ,  r, R ,  E)). (111) 

Y is the total time dependent wavefunction which itself becomes a functional of the field 
E, d is the total dipole moment operator and no is the molecular density. The set of 
coupled equations (107-1 11) describing the complete interaction of the field-molecule 
system is called the Maxwell-Schrodinger equations. In equation (109), the field 
envelope[(t) is assumed to be a function of t only. In the slowly varying envelope 
approximation, f=f(z, t )  satisfies itself a parabolic partial differential equation of the 
same form as the time dependent Schrodinger equation (Chelkowski and Bandrauk 
1988,1990). This allows one to study the effect of the multiphoton molecular transitions 
on the propagation of the pulse itself by the same numerical technique, the split 
operator method of solving general time-dependent Schrodinger equations or other 
parabolic partial differential equations such as equation (107). 

The most general time dependent solution to the time dependent Schrodinger 
equation can be written for a time increment At, as 

Y(x, t + A t )  = o(t +At ,  t)(x, t), (1 12) 
where 0 is the evolution operator (Pechukas and Light 1966), 

and is the time ordering operator. Since H can be written as f? + V(R, t), where I? is 
the kinetic energy operator, - h2/2Ma2/dR2,  we can split the total Hamiltonian H in 
terms of differential operators A and polynomial functions, B, 

H = A + B ,  A = K ,  B=V(R)+V(R,t). (1 14) 
The most general method of splitting the exponential evolution operator 0 is based on 
the Trotter formula, (Trotter 1950, Willcox 1967, Suzki 1985), 

exp [A(A + B)] = lim [exp(AA/rn) exp (ABlrn)]". 
m+a)  

From this exact formula follows the most currently used standard second-order 
accurate expression, S,, (Feit and Fleck 1984, Kono and Lin 1986), 

exp [A@ + B)1= S,(L) + 0 ( A 3 ) ,  

S,(A) =exp (142)  exp (2B)exp ( L 4 2 ) .  

We have shown recently (Bandrauk and Shen 1991, 1992), that equation (1 16) can be 
expressed as 

exp [A(A + B)] = exp [As(A + B)] exp [A( 1 - 2s)(A + B)] exp [As(A + B)] ,  (1 18) 

so that higher-order accuracy is obtained by substituting equation (1 16) into equation 
(1 18). This operation gives after manipulation, 

~ ~ ~ [ L ( A + B ) ] = S , ( ~ ~ ) S , [ ( ~ - ~ S ) ~ ] S , ( S A ) + C , ~ ~ [ ~ S ~ + ( ~  -2s3]+O(L4). (119) 
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152 A. D. Bandrauk 

To get third-order accuracy, the leading error term with coefficient C3[O(A3)], must 
vanish, i,e. 

2s3+(1 -243=0. (120) 

(121) 

(122) 

sn(n)=sn- l(sn)sn-1[(1-2s)~lSn- l(sn), (123) 

2sn+(l-2sy=O. (124) 

Thus if s is a real root of equation (120), we can obtain finally 

s3 (4  = s2(sn)s2[(1 - 2s)nls,(sn) + o(n4), 

exp [A(A + B)] = Sn(sn) + U(P ’ 2), 

By iterating (121) further, we can obtain the general iterative method, 

where 

and s is root of the more general equation 

Since A=iAt, only real roots of s can be admitted, as otherwise imaginary roots will 
create divergent exponentials, with concomitant loss of accuracy upon iterating the 
evolution equation (1 12) for a large number of time steps t = mdt .  In fact equation (124) 
always has real roots when n is odd. Furthermore, due to the symmetric 
decomposition inherent in the generative equation (1 23), then unitarity and reuersibifity 
simultaneously are conserved at each iteration step, 

S(A)S( - A) = S(A)S +(A) = 1. (i25) 
This conservation of unitarity and reversibility of the integration-iteration scheme also 
implies that the accuracy is of order An+’ = ( A t ) , + 2  (Bandrauk and Shen 1992). 

The iterative schemes developed above have been tested against the exactly 
solvable model: the forced harmonic oscillator with V(x,  t )  = x2 + x sin ( t ) ,  for which the 
exact solutions are, (Husimi 1953), (m = h = l), 

L =-$(’ - l2 + 5 sin (t). (126) 

L is the Lagrangian of the classical forced harmonic oscillator. 
In figures 7 and 8 we illustrate for the forced oscillator a comparison of four split- 

operator algorithms and their efficiency in calculating the time dependent amplitude 
(figure 7) and the phase of the time dependent function (see equation (126)) in figure 8. 
Clearly the iterative algorithm based on the split operator formula S,, equation (121) 
which has fourth-order accuracy (error A t5),  out performs the standard second-order 
operator S ,  equation (1 17), giving much more accurate amplitudes and phases for less 
CPU times (all calculations were performed on an IBM RISC - 6000/530 workstation). 
The optimum algorithm seems to be one based on S, ,  which offers sixth-order accuracy 
(error - A t 7 ) .  Recent time dependent wavepacket calculations have shown that this 
new S, algorithm allows propagation of wavepackets beyond picosecond times with 
much less CPU time than standard S, calculations (Atabek and Jolicard 1992). We 
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15001 
n-2nd order accurate S2 
, -4th order accurate S3 
o-6th order accurate S5 
~ 8 t h  order accurate S7 

Log(L2-error of Amplitude) 
Figure 7. Amplitude errors as a function of C P U  time for different split operator schemes, 

S,,S,,S, and S, for the time dependent solutions of the forced harmonic oscillator: 
V(x,  t)=x2 +x  sin(t). Exact solution is given by equation (126). All calculations were 
performed on a 15 megaflop IBM-RISC-6000-530 workstation. 

i5001 
,-2nd order accurate S2 
0-4th order accurate 53 
o-6th order accurate 35 
, -8 th  order accurate S7 

I 

Figure 8. Phase errors as a function of C P U  time for different split operator schemes, S,, S,, S, 
and S,, for the time dependent solutions of the forced harmonic oscillator, V(x , t )=x2  
+ x  sin (t). Exact solution is given by equation (126). All calculations were performed on a 
15 megaflop IBM-RISC-6000-530 workstation. 
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conclude therefore by emphasing that these highly accurate time dependent numerical 
schemes owe their high accuracy to the symmetric decomposition of the evolution 
operator 0, such that unitarity and reversibility are respected at all times. 

One informative application of these highly accurate time dependent calculations 
has been the numerical investigation of coherence effects in intense infrared multi- 
photon transitions. Thus more efficient multiphoton dissociation of molecular bonds 
using chirped pulses, i.e. pulses with variable frequency o(t) and envelopef(t), has been 
predicted (Chelkowski and Bandrauk 1990, Chelkowski et al. 1990). Control of 
intramolecular vibrational relaxation, IVR, (Chelkowski and Bandrauk 1991) has been 
another interesting finding by time dependent numerical experiments. Finally, the most 
obvious necessity of using time-dependent methods is for ultrashort, intense laser 
pulses, such that stationary states cannot be properly defined. We end this review by 
discussing an example of this problem in high intensity photophysics. 

8. Laser induced avoided crossings 
The dressed state representation of matter-radiation interaction (section 2) leads to 

coupled equations between time independent field-molecule states and enables one to 
therefore define the appropriate stationary states for any radiative and non-radiative 
coupling strength. One of the most useful concepts emanating from such a description 
is the idea of laser-induced avoided crossings between different resonant field-molecule 
potentials, figure 6, (Kroll and Watson 1976, Voronin and Samokhin 1976, Lau and 
Rhodes 1977, Bandrauk and Sink 1978,1981, Yuan and George 1978, Bandrauk and 
McCann 1989). This is illustrated in figure 6 for H: photodissociation from an initial 
bound nuclear vibrational level u in the ground ’Xi (log) electronic potential to a 
continuum (dissociative) nuclear state of the repulsive ’Z: (2~0,)  electronic potential. 

In the time independent dressed picture, the field-molecule potential [ V,(?Z;, R )  
+ ho] crosses the [V,(’C,’, R ) + ( n -  l)ho] potential as a consequence of conservation 
of total energy after absorption of one photon. The radiative interaction or electronic 
Rabi frequency oR (equation (29)), 

(127) 
is operative between the two potentials V, and V,. Figure 6 shows therefore that one can 
describe the molecular states either in the original unperturbed (crossing) state 
description called diabatic or the new field-induced potentials obtained by diagonaliz- 
ing the potential matrix W(R) for energy R,  

Vlz(R) = (’x:, n - 1 Id(R) * EO/2l2C:,n) =hwR/2, 

giving rise to the laser-induced, adiabatic molecular potentials: 

The upper adiabatic surface W+(R) will support new nuclear bound states, F +(R) ,  
called adiabatic levels. These states are quasi-bound, i.e. they have a finite lifetime or 
energy width since in the new adiabatic representation the adiabatic nuclear functions 
F+(R)  of the adiabatic potentials W,(R) remain coupled through the non-adiabatic 
interaction 
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Molecular multiphoton transitions 155 

where Y , (R) are the adiabatic electronic wavefunctions as in the theory of predissoci- 
ation (Bandrauk and Child 1970, Lefebvre-Brion and Field 1986) and in non-adiabatic 
dynamics (Nakamura 1992). Thus for adiabatic nuclear functions F + ( R )  above the 
crossing point R ,  (for A = 213 nm excitation, R,  occurs at 1-6 A, 0.59 ev with respect to 
the H i  ground state minimum, figure 6), these nuclear states remain coupled to the 
continuum nuclear states F - ( R )  of the lower adiabatic potential W ( R )  and become 
unstable. It is worth emphasing that without the laser field, there is no non-diabatic 
coupling between the Xi and Xl states due to their opposite symmetry (g and u). 
However in the presence of the field, the symmetry is broken and non-diabatic 
couplings arise between the states of the new laser induced adiabatic potentials W,(R}, 
equation (129). The linewidths of such quasi-bound states can be obtained from the 
scattering (S matrix) coupled equations calculations described in section 4 and are 
related to the lifetimes through the relation 

z(s)=5 x 10-'2/r(cm-'). (130) 
Thus a linewidth of 5 cm- corresponds to a lifetime of 1 picosecond (ps). The widths r 
are related to the photodissociation rate by the equivalence 2r/h = 2.n/hlT,J2, where T,, 
is the exact transition amplitude from the initial unperturbed (diabatic level u to the 
final continuum Ic)), equations (63) and (106). 

The quasi-bound states described in the dressed state representation are the time 
independent dressed eigenstates of the field-molecular system illustrated in figure 6 
(neglecting rotations). Such a representation has been used recently to explain high 
intensity photodissociation of H: in order to explain the new phenomenon of bond- 
softening (Bucksbaum et al. 1990) and molecular above threshold ionization, ATI, 
(Allendorf and Szoke 1991). In the first experiments, long pulses (- 100 ps) were used so 
that in this case a dressed state picture should be adequate (section 3). In the last 
experiment, subpicosecond pulses were used so that pulse shape effects might be 
expected to dominate. It can be therefore anticipated that for short pulses, due to the 
time variation of the field envelope E ,  =f(t), equation (109) the laser-induced avoided 
crossings illustrated in figure 6 will become time dependent. Hence a complete time 
dependent description of direct photodissociation in the presence of intense laser pulses 
of duration approaching the molecular time scales (the vibrational period of HT, 
z, N 10- l4 s = 10 fs), is clearly in order. 

The time dependent Schrodinger equation for the time dependent nuclear functions 
F, (R ,  t )  and F,(R,t),F= [F1, F J ,  is simply equation (t07)), 

The potentials Vl(R) and V2(R) are the well-known X: and Xi potentials of H;, and the 
radiative coupling is simply V,,(R, t )  = eR/2EO(t) cos cot. R /2  is the electronic transition 
moment <loglrl2po,), called a resonance transfer moment (Mulliken 1939). E,(t) is the 
pulse envelope. Writing the field as E0/2 [exp (iwt) + exp (- iot)], one identifies two 
components: a resonant component, exp (iot) and a non-resonant or virtual compo- 
nent, exp (-iot), equation (35). Figure 6 corresponds to the resonant case, i.e., E(t) 
= E,/2 expi(&) or equivalently RWA (section 2). Thus solving equation (131) with the 
field E(t)= E,(t)cos at corresponds to an exact calculation, whereas using only E,(t)/2 
with the crossing surfaces of figure 6 corresponds to an RWA calculation (e.g. 
Sugawara et al. (1991). 
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156 A. D. Bandrauk 

Both calculations were carried out in order to verify the applicability of RWA, and 
hence the two dressed state picture illustrated in figure 6 (Aubanel et a!. 1992). As 
discussed in section 2, corrections to RWA emanate from the virtual emissions of 
photons from the photon state In) to In + 1 ), i.e. more surfaces must be added to figure 6 
(see Bandrauk et al. 1991 for an example of 100 dressed states). Since resonant and 
virtual dressed potentials are separated by twice the photon frequency (figure l), then 
RWA or equivalent figure 6 are adequate provided the criterion, equation (30) is 
satisfied. For the present calculation at the excitation wavelength of A = 21 3 nm, 
hw-6ev. Using the transition moment eR/2 in the radiative matrix element, (127) 
and using equation (29), one obtains a radiative interaction energy ha,  -0-2-2ev for 
intensities between 1OI2 and 1014 W cmP2 at the crossing point R,. Comprising this to 
the 1s-2p transition energy of 10 ev, ones sees that RWA and figure 6 should be used for 
intensities below l O I 4  W cm-2. Higher intensities will induce virtual transitions and 
higher excitations than those considered in figure 6, thus limiting the two-state 
representation to intensities inferior to lo i4  W cmP2. 

Taking as initial condition F,(R, t = 0), the unperturbed nuclear wavefunction of 
some vibrational level u in the ground 'C; state of H ; ,  one propagates in time the 
nuclear wavefunction according to the efficient time dependent integration algorithms 
described in the previous section. This is achieved by first discretizing the initial 
function F J R ,  t =0) over a grid of about 1000 space (R)  points in a box sufficiently large 
that no reflection occurs at the large R boundary. Time integration is performed by 
'marching' forward in time simultaneously all 1000 space points, thus allowing one to 
obtain the ground, F,(R, t), and excited, F,(R, t )  nuclear functions until they propagate 
fully on the diabatic (unperturbed) potentials Vl(R)  and V2(R) after the end of the pulse. 
After the pulse is over one can integrate the probability density IF(R, t)I2 from a point 
R,  outside the right turning point of the upper, W+(R) potential ( R ,  2 3 A) in order to 
obtain the dissociation probabilities Pd, figures 9, 10. The momentum Fourier 
transformation gives the kinetic energy distribution of the photodissociating fragments 
through the relation P(E,  t )  = ( rn /p) lF(p ,  t)lz. The momentum distributions give a 
measure of the influence of the pulse shape on the dissociation dynamics (Aubanel et al. 
1992). 

1 .o  

0.8 

0.6 

0.4 

0.2 

0.0 

P 

0.0 5.0 10.0 
I ( ~ o ~ ~ \ \ / ~ ~ ~ )  

Figure 9. Photopredissociation probabilities for the 'Xi +'Xz transition of H; at 1 = 21 3 nm, 
as a function of intensity I (W cm ~ ') and initial level od. Minima are manifestations of 
molecular stabilization by laser-induced avoided crossing illustrated in figure 6. Pulse 
shape is defined in equation (132), i.e. lOOfs long, 1 fs rise and fall. - exact; .... RWA. 
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o.8 j 

157 

0.6 

0.4 
P d  

0.2 

0.0 t 
0 20 40 60 80 100 

t (fs) 
Figure 10. Photodissociation probability for ud = 11 in figure 9, as a function of time, i.e., during 

pulse,forintensitiesI(Wcm-2):(a)8 x 1012,(b)3.2x 1013,(c) 1 x 1014. Pulseis 1OOfslong 
with 1 fs rise and fall. 

We now discuss the numerical results. Figure 9 shows clearly an initial increase of 
the dissociation probability P d  for the initial unperturbed diabatic levels u = 4,6, 11. 
The pulse evelope E,(t)=f(t), was chosen such that (1 fs = 10- l 5  s), 

f(t) = t, 

f ( t )=l ,  1 GtG99fs. (1 32) 

0 < t < 1 fs, 99<t < 100 fs, 

This pulse corresponds to a linear rise (fall) in 1 fs from 0 to E,, and vise versa, the idea 
being to get the molecule into the constant, high intensity part of the pulse as quickly as 
possible, thus approaching the time-independent condition of constant field envelope 
E, related to the photon number by equation (44). The linear rise of P d  against I is 
consistent with the Fermi-Golden rule prediction, Pdcc I Vl2I2 ccl. With increasing 
intensity, deviation from this rule occurs as a saturation, i.e., a maximum occurs. This is 
then followed by a deep minimum. The minimum in P d  is a manifestation of molecular 
stabilization by suppression of the dissociation rate as shown below. Finally a constant 
plateau up to I = loi4 W cm-2 is reached. In the ud = 4 case, a plateau already occurs at  
the lower intensities, I = 1 4  x 10’ W cm ’. These are also manifestations of stabiliz- 
ation by the laser field. In figure 9, we report both exact and RWA calculations. The first 
are obtained using the exact field E(t) = E,(t)  cos Ct whereas RWA results from using 
the resonant expression E(t) = [E0(t)/2J exp (iwt). One sees from figure 9 that for the 
lower levels, ud = 4  and 6, RWA agrees fairly well with the exact calculation. Devations 
occur for nd = 1 1 around I =  10l3 W cm -’ due to the higher density of level above ud 
= 11. in summary, figure 9 shows clearly the existence of dissociation probability 
maxima approaching unity (- 100% yield), minima (10-20% yield) and high intensity 
plateaus of photodissociation yield around 50%. 

The minima in P, correspond to molecular stabilization by suppression of the 
dissociation rate with increasing intensity. This is further confirmed in figure 10, where 
we illustrate the time dependent dissociation probability during the pulse. As explained 
above, since we integrate everything to the right of R,, the outer upper state turning 
point, then the results illustrated in figure 10 are a measure of the nuclear wavepacket 
which is well past the laser-induced interaction region. Figure 10 emphasizes the 
different behaviour of the u d =  11 initial level at its maximum dissociation 
intensity, I = 8 x 10” W cm-2 against the minimum dissociation intensity I N  3.2 
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x 1 O I 3  W cm-2. Thus in the lower field case, the dissociation rises linearly with time 
during the pulse, suggesting a nearly constant dissociation rate or width (or 
(lifetime)-’; equation 130). In contrast to this rapid dissociation rate, at the two higher 
intensities rapid dissociation occurs only in the first 10-20 fs, then there is stabilization 
ofthe initial molecular state, i.e. dissociation ceases to occur while the molecule is in the 
pulse. 

An interpretation of the manifestation of the minima in the photodissociation at 
higher laser intensities and hence of the onset of molecular stabilization can be found in 
our previously published theory of laser-induced resonances, (Bandrauk and Sink 
1978,1981, Bandrauk and McCann 1989, McCann and Bandrauk 1990,1992). This is 
based on the formal analogy of direct intense field photodissociation in the dressed 
state representation, figure 6, with the theory of predissociation (Bandrauk and Child 
1970). The semiclassical S matrix for the two channel problem in figure 6 can be 
calculated analytically as a function of the parameters of the unperturbed potentials V,, 
V2 and the time independent radiative interaction d(R)  E0 /2 .  We emphasize that this 
two channel calculation is equivalent to RWA (figures 1 and 6) and can only be 
compared to the RWA photodissociation reported in figure 9. However, these are 
nearly identical to the exact results since the RWA criterion, equation (30) is well 
satisfied for intensities inferior to 1014 W cm-2. 

Thus in parallel with the time dependent probability calculations, Pd,  figures 9 and 
lo, we present in table 1 the S matrix results for the linewidths f, of the laser induced 
resonances or adiabatic levels of the upper laser-induced surface W+(R) at the maxima 
and minima in Pd seen in figure 9. The widths are found from the poles at energy 
E = E,  - iT, of the S matrix or transition amplitudes from the 2 x 2 coupled equations 
corresponding to figure 6 (see section 4, equations (80) and (87)). It is found that in 
general, as predicted by the semiclassical predissociation theory (Bandrauk and Sink 
1978, 1992, (Bandrauk and McCann 1989), that minimum linewidths or stable laser 
induced resonances occur whenever a quasi-degeneracy arises between some diabatic 
and adiabatic levels (figure 6). As an example, minima in the linewidths TI of uad = 0, 1 
as a function of intensity are found at intensities 3.2 x 10” Wcm-’ and 2.6 
x l O I 3  W cm-2. uad is the adiabatic level of W+(R) closest to the initial unperturbed 
level ud. The minima in r,, the table, correspond to the RWA photodissociation 
probability Pd for ud = 4 and 6, respectively. From figure 6, the simultaneous minima in 
f and pd correlate with the coincidence (degeneracy) of Uad = 0 with ud = 4 at  I = 3.2 
x1012Wcm-2 and uad=1 with u,=6 at I = 2 . 6 x  1013Wcm-2. Similarly u d = 6  is 
resonant with uad = 0 at  6 x 10’ W cm- ’. This correlates with the onset of a minimum 
plateau in P, for intensities beyond 6 x 1013 W cm - ’. All adiabatic levels are above the 
dissociation limit at  I = 4  x 1014 W cm-’, yet incomplete dissociation occurs at these 
very high intensities. 

Table 1. Energies (eV) of diabatic ( t l d )  adiabatic (uad) levels, resonance widths Tr (cm ~ and 
intensities I (Wjcm’) for which quasidegeseracy occurs (1=213 nm). Energies are with 
respect to u=O of ground state of H,. 

ud E d  (ev) uad I(W/cmz) E ,  (ev) r r ( c m - ’ )  

4 1641 0 3 -2x  10l2 16-35 2 . 4 ~  
6 16.82 1 2 . 6 ~  l O I 3  16-89 1.3 x 
6 16.82 0 5.2 x lo t3  16.80 1 . 4 ~  lo-’ 
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We conclude therefore that at intensities below I = l O I 4  W cm-2 and for sub- 
picosecond pulses, a two state dressed representation is capable of explaining the 
phenomenon of molecular stabilization of photodissociation in H;, as a result of 
resonances created by a laser-induced avoided crossing, figure 6. The theoretical 
predictions obtained from the time independent dressed state calculations and the 
exact time dependent solutions of the field-molecule Schrodinger equation agree 
together and with the experimental findings (Bucksbaum et al. 1990, Allendorf and 
Szoke 1991). This is an example of the usefulness of both types of approaches, time 
independent and time dependent coupled equations, to elucidate nonperturbative 
multiphoton processes. 
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